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  Computer Calculations of Eddy-Current Power Loss in Rotating  
Titanium Wheels and Rims in Localized Axial Magnetic Fields

David J. Mayhall, Werner Stein, and Jeffrey B. Gronberg
 Lawrence Livermore National Laboratory

We have performed preliminary computer-based, transient, magnetostatic calculations 
of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel 
rims in the predominantly axially-directed, steady magnetic fields of two small, 
solenoidal coils. These calculations have been undertaken to assess the eddy-current 
power loss in various possible International Linear Collider(ILC) positron target wheels. 
They have also been done to validate the simulation code module against known results 
published in the literature. The commercially available software package used in these 
calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft 
Corporation.

Calculations with Various Wheel and Wheel Sector Geometries

The geometry for the wheel and the coils is shown in Figure 1. The wheel is 2 m in 
diameter and 1.5 cm thick. The wheel rotates at 900 rpm in the counterclockwise 
direction about the z-axis. The electrical conductivity of the wheel is taken to be 5.618 
105 siemens/m, which is the reciprocal of the electrical resistivity of the titanium alloy, 
Ti6Al4V(Grade 5), Annealed. The resistivity of this alloy is 1.78 10-6 ohm-m, as given by 
an ASTM material data sheet. The temperature corresponding to this value is not given.
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 Figure 1 The geometry for the wheel and the coils.

Two small, current-carrying, cylindrical, solenoidal coils are located off the flat sides 
of the wheel at 0.9 m radially outward from the center of the wheel with their axes 
parallel to the axis of rotation of the wheel, which is the z-axis. The near end-plane of 
each coil is 3.27 cm from the corresponding wheel surface. Each coil is assumed to be a 
cylindrical annulus of solid copper with an inner diameter of 5 cm and an outer diameter 
of 8 cm. Each coil is 8 cm in length. The steady, uniform current in each coil is adjusted 
to 2.174 106 A to produce a maximum value of approximately 5 T of B field or magnetic 
flux density at each lateral surface of the wheel, when stationary. The B field vector on 
the axial centerline of the coils is upward in the positive z direction. The coils are not 
models of actual physical coils, but are computational coils created to produce the desired 
B field. 

 The first calculation spans two revolutions of the wheel or 0.1333 sec. The magnitude 
of the B field on the upper surface of the wheel is shown in Figure 2. The maximum 
value of the B field has increased to 5.695 T, as shown in the color map in the figure. The 
location of the B field maximum has shifted upward from the coil centerline, which 
intersects the y-axis. The maximum has shifted in the direction of the rotational motion. 
The outline of the upper coil boundaries is superimposed on the B field pattern as two 
circles.
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Figure 2 The magnitude of the B field on the upper surface of the wheel after two revolutions.

 The current density vector on the upper surface of the wheel after two revolutions is 
shown in Figure 3. The current density has a strong component in the outer radial 
direction under the upper half of the coil projection on the wheel surface. The outwardly 
radial current density vector under the coil crossed into the upward B field vector causes 
a force density in units of nt/m3 directed downward in the x direction. This motion-
retarding J X B force density results in a retarding force in the x direction when 
integrated over the volume of the wheel. In the preceding force density expression, J and 
B are vectors, and X indicates the vector cross product.
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Figure 3 Current density vectors on the upper surface of the wheel after two revolutions.

 The J X B force density vectors on the upper surface of the wheel near the coil end-
plate projection on the wheel are shown in Figure 4. The units for these vectors are nt/m3. 
Notice that these force density vectors predominately oppose the upward motion of the 
wheel. Small force density vector components in the positive and negative radial 
directions are also present.
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Figure 4 The J X B force density vectors on the upper surface of the wheel after two revolutions.

The time-dependent power loss in watts due to the eddy currents in the wheel for two 
revolutions is shown in Figure 5. The curve is noisy due to the somewhat unrefined finite 
element mesh, which is automatically made more dense in the region under the coils. 
Notice that the two peaks in the power loss curve occur at the end of the first and second 
revolutions, when the densest region of the mesh is under the coils. Conversely, the two 
minimal parts of the power loss curve occur when the least dense part of the mesh has 
rotated under the coils. Because of the variation in the power loss curve due to the 
varying mesh density, the average of the power loss over the two revolutions must be 
considered to be an estimate of the correct value. The estimate of, perhaps, 2.2 106 w can 
be improved upon by refining the mesh until the power loss curve converges. A present 
estimate of the average eddy-current power loss is thus about 2950 hp from division by 
746 w/hp. A hand calculation of the power loss with the formula,

Pdis =  (vB)2V/ρ,                                           (1)
where v is the velocity of the wheel under the coils, V is the volume, πDc

2d/4, and ρ is 
the resistivity of the wheel material, gives an eddy-current power loss of 3990 hp. The 
quantity Dc is taken as the coil inner diameter of 5 cm, d is taken as the wheel thickness 
of 1.5 cm, B is taken as 5 T, v is taken as 900 rpm(2π radians/rev)(0.9 m)/(60 sec/min) = 
84.8 m/sec, and ρ is 1.78 10-6 ohms/m.
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Figure 5 Time-dependent  eddy-current power loss in the wheel over two revolutions.

We have also calculated the eddy-current power loss in a rim of the wheel when the 
interior of the wheel has been removed so that just the outer 3 cm of wheel radius remain. 
The coils have been moved outward radially so that their axial centerline is at 98.5 cm 
from the center of the wheel. This geometry is shown in Figure 6. The rim rotates 
counterclockwise about the z-axis with the rotation vector pointing in the positive z 
direction. Once again, two full revolutions of the rim have been calculated. The 
magnitude of the B field on the upper surface of the rim is shown in Figure 7. 
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 Figure 6 The geometry of the rim of the wheel and the coils.
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Figure 7 The magnitude of the B field on the upper surface of the rim after two revolutions.

The pattern of the current density vectors on the upper surface of the rim after two 
revolutions is shown in Figure 8. We notice that the peak current density for the rim 
upper surface is 5.791 107 A/m2, instead of the value of 1.364 108 A/m2 for the full wheel. 
We also notice that for the rim, the strong vectors are transverse to the rim circumference, 
instead of radial as for the full wheel. This different pattern means that the predominant J 
X B forces will be radially inward and outward and will cancel each other to some extent. 
We can thus expect less retardation of the rim than for the full wheel and less eddy-
current power loss for the rim.
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Figure 8 The current density vectors on the upper surface of the rim after two revolutions.

Figure 9 shows the J X B force density vector pattern on the upper surface of the rim 
after two revolutions. We see that the peak value of this force density is 3.011 108 nt/m3, 
instead of 7.942 108 nt/m3 for the full wheel. We also see that the strongest vectors are 
indeed in the inward and outward radial directions. Thus, much less retardation should 
occur for this geometry for which the eddy-current flow is restricted.
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Figure 9 The J X B force density vectors on the upper surface of the rim after two 

revolutions.

The time-dependent eddy-current power loss for this case is very noisy due to the 
relatively small number of tetrahedra in the rim. The mesh had 4,906 tetrahedra with 501 
in the rim. The power loss varied from about 16,000 w(21 hp) to about 94,000 w(126 hp).

 Because of the variation in the time-dependent eddy-current power loss for the rim, 
further mesh refinement was desired so that reliable, converged power loss results could 
be obtained. To speed up the study of mesh refinement for the rim, 324 degrees of the rim 
were removed, and 36 degrees or 10 % were retained. This new geometry is shown in 
Fig.10. The segment of the rim is shown in red. A pie-shaped region of air is shown in 
gray. Rotation is once again counterclockwise about the z-axis. The rim remains under 
the coils for about 0.00667 sec. The number of tetrahedra in the mesh, which included the 
air region and the rim segment, was varied from 2162 to 104,702 tetrahedra. For above 
16,971 tetrahedra, the power loss curves were acceptably similar. The results for 104,702 
tetrahedra, are shown in Fig. 11. The average eddy-current power loss for the plateau 
region is probably about 111,200 w or 149 hp. This value is likely a reasonable estimate 
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of the eddy-current power loss and hence the required minimal motor horsepower for this 
particular geometry and coil current.

Figure 10 The geometry for 36 degrees of the rim and the coils.
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Figure 11 Eddy-current power loss for the 36 degree rim with 104,702 tetrahedra.

A question that has arisen during these calculations is the possible formation of skin 
effect current layers near the lateral surfaces of the wheel and the rim. If skin effect layers 
form near these surfaces, the mesh must be set up to resolve these layers in order to get 
decent results for the eddy-current loss. To investigate possible axial skin layers, we have 
subdivided the solid model of the rim segment into equally spaced parts in the axial or z 
direction. Figure 12 shows the magnitude of the B field in the rim segment along the coil 
centerline at 0.004 sec into the simulation for two axial layers and 53,425 tetrahedra. 
Although the B field magnitude decreases through the rim from either side to the center, a 
skin effect layer, in which the field drops by about 67 % or e-folds over a short distance, 
is not formed. In Figure 12, the peak field at the right side is about 6.42 T, while the 
minimal field at the center is about 6.09 T. The decrease in the field from the right side to 
the center is about 5.14 %.



13

 

Figure 12 Magnitude of the rim B field on the coil centerline for 2 axial layers.

Figure 13 shows the magnitude of the current density J in the rim along the coil 
centerline at 0.004 sec. The general trend of the current density distribution along the coil 
centerline is similar to that of the corresponding B field. The value of the magnitude of 
the current density at its minimum is about 1.579 107 A/m2. The value of the current 
density at its maximum at the right side is about 1.873 107 A/m2. The current density at 
the center of the rim is thus about 84.3 % of its peak value. A more refined mesh should 
yield a smoother curve for the magnitude of the current density.
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Figure 13 Magnitude of rim current density on the coil centerline for two axial layers.

Figure 14 shows the magnitude of the B field on the coil centerline at 0.004 sec into 
the simulation for ten axial layers and 103,891 tetrahedra. Although the variation of the B 
field magnitude from either side to the center is more pronounced for this arrangement of 
the mesh, skin effect layers, once again, do not form. In Figure 14, the peak field near the 
left side is about 6.31 T, while the minimal field at the center is about 5.76 T. The 
decrease in the field from the maximum near the left side to the center is about 8.72 %. 
The results of this investigation indicate that axial skin effect layers do not form for this 
geometry under these conditions at 900 rpm. At a much higher speed, axial skin effect 
layers are expected to form. These layers are also expected to form for an alloy, which 
has a much lower electrical resistivity than the one we are presently considering.
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Figure 14 Magnitude of the rim B field on the coil centerline for 10 axial layers.

Figure 15 shows the magnitude of the current density in the rim along the coil 
centerline at 0.004 sec for the simulation with ten axial layers. For this simulation, the 
general trend of the current density distribution along the coil centerline is different from 
that of the corresponding B field. In this case, the current density is essentially constant 
from the upper face of the rim to about 1.1 cm into the rim, where it rises to a maximum 
at the lower face of the rim The value of the magnitude of the current density at its 
minimum is about 1.561 107 A/m2. The value of the current density at its maximum at the 
right side is about 3.204 107 A/m2. The current density at the center of the rim is thus 
about 51.3 % of its peak value. A layer of increasing current density occupies the outer 
one-third of the rim.
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Figure 15 Magnitude of the rim current density on the coil centerline at 0.004 sec.

We have examined two configurations involving a spoke to be connected to the wheel 
rim. The first configuration is an isolated spoke rotating through the magnetic field of the 
coils at 900 rpm. The geometry for this configuration is shown in Figure 16. The spoke is 
a rectangular solid 10 cm in length with a cross section 1 cm wide and 0.25 cm high. The 
material of the spoke is the same titanium alloy as previously used for the wheel and the 
rim. The spoke rotates counterclockwise between the coils at 900 rpm. Eddy currents are 
generated in the spoke as it rotates in the magnetic field created by the coils. The mesh 
for this simulation contained 22,663 tetrahedra, 11,876 of which were allocated to the 
spoke. The time-dependent eddy-current power in the isolated spoke is shown in Figure 
17. The power loss curve contains two major peaks. The first peak, at 0.00025 sec, is the 
larger. It has a value of about 161.6 w or 0.217 hp. The second peak occurs at 0.0009 sec.
The peak power loss in the isolated spoke is quite small compared to the loss in the rim of 
about 149 hp, which was estimated previously. The peak power loss in the isolated spoke 
is about 0.146 % of the estimated average loss in the rim. Thus, the addition of spokes of 
the type considered to the rim should create only a very small perturbation to the eddy-
current loss in the rim. 
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 Figure 16 An isolated spoke rotating between the coils. 
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Figure 17 Power loss in the isolated spoke.

  

The current density pattern at the right end of the upper flat surface of the spoke at 
0.00025 sec is shown in Figure 18. At this time, the spoke is entering the bore of the 
coils. The view is downward from above the spoke. The projections of the coil inner and 
outer boundaries appear at the upper right as two sets of connected line segments.  The 
eddy currents are flowing clockwise about the spoke. The current density is stronger at 
the right end, where the axial magnetic field is stronger. Due to some unknown error in 
the plotting software, the eddy current vectors are shifted downward from the upper edge 
of the spoke by about 0.5 cm. The upper line of vector arrows should coincide with the 
upper edge of the spoke, which appears as two perpendicular line segments. The current 
density pattern at the right end of the upper flat surface of the spoke at 0.001 sec is shown 
in Figure 19. At this time, as the spoke is emerging from beneath the coils, the eddy 
currents are flowing counterclockwise about the boundary of the spoke. Once again, the 
current density vectors should be translated upward about 0.5 cm to coincide with the 
outline of the spoke. Apparently, the eddy currents in the spoke change direction as the 
spoke passes beneath the center of the coils. The peak eddy-current flow in a given 
direction most likely occurs at the two major peaks of the time-dependent power loss 
curve
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Figure 18 The current density vectors on the upper surface of the spoke at 0.00025 sec.
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Figure 19 The current density vectors on the upper surface of the spoke at 0.001 sec.

We have also examined a single spoke connected to a 36-degree section of the rim. 
The geometry for this situation is shown in Figure 20. The simulation starts with the 
spoke and rim section in the position shown in the figure. The rim section then rotates 
counterclockwise between the coils at 900 rpm. In this simulation, 32,164 tetrahedra were 
used. 15,275 tetrahedra were allocated to the rim, and 1431 were allocated to the spoke. 
The eddy-current power loss is shown versus time in Figure 21. The average power loss 
during the plateau region is about 119,000 w or 159.5 hp. This value is most likely 
greater than the previously cited 149 hp because of the greater number of finite elements 
used in the rim section. The peak Lorentz or J X B forces on the spoke occur at 0.0003 
sec and 0.0009 sec. At 0.0003 sec, the force on the spoke in the x-direction is 2.332 nt, 
and the force in the y-direction is 10.170 nt.  The resultant force on the spoke in the xy-
plane is thus 10.434 nt. At 0.0009 sec, the force on the spoke in the x-direction is 1.788 
nt, and the force in the y-direction is –7.590 nt.  The resultant force on the spoke in the 
xy-plane at this time is then 7.798 nt. These two peak force values correspond to the two 
peaks of the power loss of the isolated spoke in Figure 17.
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 Figure 20 A spoke connected to the rim section.
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Figure 21 Eddy-current power loss in the spoke and the rim section.

We have carried out further simulations of titanium rims and spokes with water-
cooling passages. Figure 22 shows a hollow spoke connected to a rim with two water-
cooling passages in it. The titanium spoke, which is a tube, is shown in blue. It is 15 cm 
in length. The outer diameter is 9 mm, and the inner diameter is 7 mm. The hollow region 
is assumed to be vacuum in the simulation, thus ignoring eddy currents that might flow in 
the water. The spoke is connected to the rim section, shown in gray. The dimensions of 
the rim cross section are 2.2 cm in the radial direction and 1.43 cm in the axial direction. 
The outer dimension of the rim section is 1 m from the axis of rotation, which is the z-
axis. The rim section subtends 8.193 degrees relative to the center of rotation. The outer 
linear distance of the rim section in the circumferential direction is 14.28 cm. The two 
water-cooling passages in the rim section are shown in blue near the inner circumferential 
boundary. They are centered at 4.5 mm from the inner radius of the rim section and 3.93 
mm from each of the axially facing surfaces of the rim. The passages are 0.5 mm in 
diameter. The two passages are also assumed to contain vacuum. Two solenoidal 
electrical coils are shown in red. The coils are each 6 cm in outer diameter and 2 cm in 
inner diameter. They are 8 cm in height and located 3.285 cm from the corresponding 
axially facing surfaces of the rim section. The axial centerline of the two coils is located 
98.9 cm radially outward from the coordinate origin. The current in each coil is set at 
3.355 106 A to produce a B field magnitude of 5.00 T at the surface of the rim section 
when there is no motion. The solution mesh contains 23,478 tetrahedra.. The currents in 
each coil are in the same direction so that the B fields from each coil add to produce a 
magnetic flux vector in the positive z direction. The coils are thus in a “boost” 
configuration, as opposed to a “buck” configuration, in which the field vectors from the 
two coils oppose each other and generate smaller field values between the coils. Figure 
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23 shows the magnitude of the B field along the axis of the coils from the top of the 
lower coil to the bottom of the top coil. The lower axially facing surface of the rim 
section is at 0.03285 m on Figure 23, the axial center of the rim section is at 0.04 m, and 
the upper axially facing surface of the rim section is at 0.04715 m on Figure 23. Figure 
24 shows the magnitude of the B field on the top surfaces of the rim section and the 
spoke for the rim section centered under the coils in the boost configuration with no 
motion. The wire frame outline of the coils are superimposed on the rim and the spoke.

Figure 22 A hollow spoke and rim with water-cooling passages.
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Figure 23 The magnitude of the axial B field between the coils.
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Figure 24 The B field magnitude for the boosting coil configuration without motion.

Figure 25 shows the eddy-current power loss for a solution mesh with 84,065 
tetrahedra and a time step of 10-4 sec. The peak power loss is 22,385 w or 30.01 hp. Thus, 
we see that using smaller bore coils and a smaller dimension spoke and rim section with 
cooling passages filled with vacuum reduces the peak power loss substantially from about 
160 hp. The volume within which the strong eddy currents can flow has been 
substantially reduced. Figure 26 shows the B field magnitude along the axis of the coils 
when the rim section is centered under the coils with no motion, in red, and at 0.0014 sec 
into the motional simulation when the rim section is almost centered under the coils at 
900 rpm, in blue. The B field magnitude is plotted within the axial extent of the 
cylindrical computational band object. All rotational motion occurs within the band 
object. The band object extends from about 1 cm above the lower coil to about 1 cm 
below the upper coil. The B field magnitude for the stationary case is greater than the B 
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field magnitude for motion at 900 rpm, except at the extreme right of the plot. The rim 
section extends axially from 0.03285 m to 0.04715 m. It is demarcated by the 
discontinuities at the ends of the center sections of the two curves. The minimum value of 
the axial B field magnitude for 0.0014 sec is 4.457 T.

Figure 25 Eddy-current power loss for a spoke and rim section with cooling passages, boosting.
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Figure 26 Axial B field magnitude with and without motion.

We have reversed the direction of the current in the top coil, so that the coils are in a 
bucking configuration. Figure 27 shows a color contour plot of the B field magnitude on 
the top surface of the spoke and the rim section when the rim section is centered under 
the coils and motionless. The outline of the coils is superimposed on the B field pattern. 
The corresponding axial profile of the B field magnitude between the coils is shown in 
Figure 28. The small discontinuities at about 0.01 m and 0.07 m show the locations of the 
axial edges of the computational band object. The minimum B field magnitude at the 
center of the rim section at 0.04 m is about 0.32 T.
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Figure 27 The B field magnitude for the bucking coil configuration without motion.
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Figure 28 The axial B field magnitude for the bucking configuration without motion. 

Figure 29 shows, in blue, the axial B field magnitude at 0.0014 sec within the 
computational band object when the rim section is rotating at 900 rpm. The rim section is 
almost centered under the coils. The corresponding B field magnitude for no motion is 
shown in red. The curve for no motion is higher than the curve for 900 rpm, except from 
about 0.03 m to 0.037 m, about 0.04 m to about 0.05 m, and at 0.07 m. The initial axial B 
field appears to be altered less by the motion in the bucking configuration than in the 
boosting configuration.
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Figure 29 Axial B field magnitude with and without motion for the bucking configuration.

Figure 30 shows the time-dependent power loss of the rim section and the spoke in 
the bucking coil configuration. The peak power loss is now about 3740 w or 5.01 hp at 
0.00160 sec.
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Figure 30 Eddy-current power loss for a spoke and rim section with cooling passages, bucking.

Next, we have considered a rim section of 0.820 degrees of radial extent, connected to 
a central spoke of the previous type. The objective of this exercise is to estimate the 
steady-state eddy-current power loss of a target wheel composed of many small, water-
cooled rim sections, which are electrically insulated from each other. The geometry for 
this case is shown in Figure 31. The linear distance between the outer radial corners of 
the axial-facing surface of the rim section is 1.43 cm. The polarity of the coils was set to 
be boosting with the B field vector upward. 79,840 tetrahedra were used in the 
simulation. The time-dependent eddy current power loss is shown in Figure 32. The peak 
power loss is 1203 w or 1.612 hp. Thus, azimuthally laminating the rim greatly reduces 
the eddy-current power loss by restricting the eddy-current path length. This technique of 
lamination to reduce eddy-current losses is used extensively in iron and steel in electrical 
power equipment.
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 Figure 31 The 0.820-degree rim section between the coils.
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Figure 32 Eddy-current power loss for the 0.820-degree rim section and spoke, boosting.

Next, we have reversed the current polarity in one coil to produce a bucking magnetic 
field configuration. The resulting eddy-current power loss curve is shown in Figure 33. 
The power loss curve now consists of two peaks, indicating a reversal of the direction of 
the eddy-current flow in the axially-facing planes with time. Viewed from the top, the 
current first flows clockwise and then flows counterclockwise. The peak power loss, at 
the height of the first peak of the curve, is 1192 w or 1.598 hp. The bucking configuration 
for the small rim section results in only a very small reduction in peak eddy-current 
power loss of about 0.868 % from the boosting configuration. The reduction may be 
somewhat greater if the peak of the power loss curve in Figure 32 is captured with a 
reduction in time step or an increase in mesh refinement.
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 Figure 33 Eddy-current power loss for the 0.820-degree rim section and spoke, bucking.

Simulation of Experiments with Small Wheels

We have simulated a proposed experiment with a solid Ti6Al4V wheel with a 
diameter of 0.60 m and a thickness of 1.4 cm. Initially, a 63-degree sector of the wheel is 
used to reduce computation time. The coils from the previous simulations of the water-
cooled rim sections were also used in this simulation. The radial coil centers are located 
at 0.29 cm radially outward from the sector axis of rotation. An end of each coil is placed 
2.0 cm from the corresponding axial wheel sector surface. The geometry for this case is 
shown in Figure 34. The current in each coil is set to 172,132.15 A to produce a B field 
magnitude of 0.500 T at the upper surface of the disk sector when stationary. The first 
simulation was performed with 57,753 tetrahedra at a speed of 600 rpm. The time –
dependent eddy-current power loss is shown in Figure 35. The average power loss is 
about 108 w or 0.145 hp. The eddy-current torque curve is shown in Figure 36. An 
estimate of the average steady-state torque from observation of the plateau of the curve in 
Figure 36 gives about  –1.68 nt-m. The negative sign indicates that the torque opposes the 
rotation of the wheel.
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Figure 34 Geometry for simulation of a small Ti6Al4V wheel.
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Figure 35 Eddy-current power loss for a 60-cm diameter Ti6Al4V wheel at 600 rpm.
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 Figure 36 Torque for a 60-cm diameter Ti6Al4V wheel at 600 rpm.

We have performed a number of simulations at a range of speeds using two differently 
sized sectors and two different time steps to estimate the speed at which the peak torque 
occurs. The results of these simulations are shown in Figure 37. Three separate curves of 
estimated steady-state torque in nt-m versus angular frequency in rpm are shown. The 
orange curve is for a 67-degree sector with a time step of 10-4 sec. It extends from 600 to 
5,000 rpm. The black curve is for the same 67-degree sector with a time step of 2 10-5

sec. It extends from 0 to 11,000 rpm. The blue curve is for a 123-degree sector with a 
time step of 2 10-5 sec. It extends from 0 to 30,000 rpm. The simulations were begun with 
the 67-degree sector with the time step of 10-4 sec at 600 rpm. After the torque appeared 
to diverge from an expected trajectory at 5,000 rpm, the time step was switched to 2 10-5

sec for better resolution. At 11,000 rpm, the 123-degree sector was started as a check on 
the simulation results. The minimal torque, which occurs at 16,000 rpm and 17,000 rpm, 
is estimated from the simulations to be –19.4 nt-m.

We will estimate the expected speed for the minimal torque from the formulas in the 
paper by J. H. Wouterse [7]. We will assume that the distance between the top of the 
bottom electrical coil and the bottom of the top coil, 5.4 cm, corresponds to Wouterse’s 
pole face air gap, x. We will take the coil bore diameter, 2 cm, to correspond to 
Wouterse’s pole face diameter, D. We will take Wouterse’s disk thickness, d, to be the 
simulation disk thickness, 1.4 cm. We will take Wouterse’s distance from the center of 
the disk to the center of the pole, R, to be the distance from the center of the simulation 
disk to the center of the coil bores, 29 cm. We will take Wouterse’s disk radius, A, to be 
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the simulation disk radius, 30 cm. We will take ρ, the resistivity of the Ti6Al4V disk, to 
be 1.78 10-6 ohm-m. We will take ξ, Wouterse’s ratio of the zone width of the asymptotic 
current distribution around the iron poles to the air gap, to be 1.0, which he proposes as a 
reasonable estimate. Wouterse uses c to stand for the ratio of the total contour eddy 
current resistance to the resistance of the contour part under the iron poles. He gives the 
formula for c as 

c = 0.5(1 – 1/(4(1 + R/A)2((A - R)/D)2).                    (2)
Substitution of our values in m into Equation 2 gives,  

 c = 0.5(1 – 1/(4(1 + 0.29/0.3)2((.3 - .29)/.02)2),        (3)
c = 0.5(1 – 1/(4 x (1+0.9666667)2(.01/.02)2)),          (4)
c = 0.5(1 – 1/(4 x (1.9666667)2(.5)2),                        (5)

 c = 0.5(1 – 1/(4 x 3.8677778 x 0.25)),                       (6)
c =  0.5(1 – 1/3.8677778),                                         (7)
c =   0.5(1 – 0.2585464),              (8)
c =  0.5 x 0.7414536,                                                 (9)
c =   0.3707268.                                                         (10)

Wouterse gives the formula for the speed at the minimal torque or the maximum 
resisting force, vk, as                                                                                                         

vk = (2/µ0)(1/(cξ)).5(ρ/d)(x/D).5,                                 (11)
where µ0 is the free space permeability of 1.257 10-6 henrys/m in the MKS system of 
units.

Substitution of our values into Equation 11 for vk, gives                                                         
 vk = 2 x 1.78 e-6/(1.257 e-6 x 0.014)(0.054/(0.3707268 x 1 x 0.02)).5,  (12)

vk = 202.29572(7.2829911).5,                                    (13)
vk = 202.29572*2.6987018,                  (14)
vk = 545.9358 m/sec.                                                  (15)

The critical angular frequency, in radians/sec, is ωk = vk/r, where r is an appropriate 
radius in m. Taking r as the outer radius of wheel at 0.3 m, the critical angular frequency 
is ωk = 545.9358/0.3 = 1,819.786 rad/sec. Converting rad/sec to rpm, we get ωk = 
1,819.786 rad/sec x 60 sec/min/(2π rad/rev) = 17,377.676 rpm = 17,380 rpm. This 
estimated value is close to the estimated range from the simulations of 16,000 to 17,000 
rpm, which can be refined with more exact simulation. If we take the radius as the radius 
at the center of the coil bore, 0.29 m, we get ωk = 17,377.676*0.3/0.29 = 17,977 rpm. 
These results indicate that Wouterse’s formulas for the critical speed for widely separated 
soft iron pole faces can be used for estimation for our case of separated electrical coil 
pairs.
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Figure 37 Eddy-current torque versus angular frequency for the Ti6Al4V wheel.

 We have also calculated estimates of the torque versus angular frequency for the 
Ti6Al4V wheel from a computer-program implementation of Wouterse’s formulas [7]. A 
comparison of these estimates of torque with the simulations with the 123-degree sector 
at a time step of 2 10-5 sec is shown in Figure 38. This implementation is discussed in 
some detail in the later section on the simulation of Smythe’s case for an electromagnet. 
At 10,000 rpm, Wouterse’s formulas give a torque of  -15.41 nt-m. The simulations give 

a value of about  –17.7 nt-m. The percent difference between the two curves at that point 
is 12.9 % with the simulated value as the base. The angular frequency for the minimal 
torque from Wouterse’s formulas in Figure 38 is 17,982 rpm, which is slightly greater 
than we previously estimated from hand calculations. We expect Wouterse’s formulas for 
an electromagnet with iron poles to be only an estimate for our case with the magnetic 
field created by coils for a number of reasons. The boundary conditions on the B and H 
fields at the surfaces of the iron poles are that the fields are zero. For an analytic 
treatment of our case, the boundary conditions at the end of the coils would be quite 
different and more complicated. Wouterse’s formulas are for the ratio of the pole gap to 
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the pole diameter, x/D, to be small. For Smythe’s electromagnet case, x/D = 0.075. For 
our case here, the coil gap to coil bore ratio, x/D = .054/.02 = 2.7. In the simulation, we 
undoubtedly have magnetic induction beyond the coil bore projection on the wheel. 
Wouterse’s model assumes no magnetic induction beyond the pole piece projection on 
his disk. The estimate from Wouterse’s formulas may be lower than the simulated results 
because Maxwell 3D includes the added drag effect of the field and eddy-currents beyond 
the coil bore projection on the wheel.  It is interesting that Wouterse’s formulas, when 
applied to our obviously different case, give such relativity decent agreement.

Figure 38 Comparison of Wouterse’s and simulated torque for the Ti6Al4V wheel.

One may wonder what factors control the location of the speed at which the minimal 
torque occurs for situations like that in Figure 34. We believe that the wheel permeability 
and conductivity and the geometry determine the location of the peak absolute value of 
the torque versus speed curve. The permeability, the resistivity or inverse conductivity, 
and several geometric factors, ratios, and quantities occur in Wouterse’s Equation 10(our 
Equation 27, to be encountered later) for the critical velocity. In addition, the analysis of 
Woodson and Melcher [9] of the differential equation for the diffusion of an external 
magnetic induction into a steadily translating conductive plate, reveals a parameter, Rm = 
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µvl/ρ, called the magnetic Reynolds number, where µ is the plate magnetic permeability, 
1/ρ is the plate conductivity, v is the speed of the plate and l is the length of the external 
induction region. If Rm is 1, the external induction is unaffected by the eddy currents 
induced in the moving plate. If Rm >1, the eddy currents annihilate enough of the external 
induction to affect the initial distribution of the external induction. The greater that Rm is 
above unity, the greater is the initial external induction changed. If Rm is infinite, the 
external induction is completely excluded from the moving plate. Rm is the ratio of two 
time scales – the time scale for diffusion of the induction into the conductive plate, µl2/ρ, 
and the time scale of the translation, l/v, or the time for the plate to pass through the 
region of the magnetic induction. For another geometry, some other characteristic 
distance is substituted for the length l. For example, Boulnois and Giovacchini [1] choose 
the height of their rectangular coil above their rotating wheel for the characteristic 
distance in their definition of the magnetic Reynolds number in their Figures 4 and 5. Part 
of their work is discussed in a later section on a simulation of the experiment reported in 
their paper.

To demonstrate that the value of the magnetic induction should not affect the critical 
speed for an otherwise fixed situation, we have doubled the current in the two coils in 
Figure 34 and then estimated from more simulations the steady state eddy-current torque 
versus angular frequency. The results are shown in Figure 38 by the blue curve. The peak 
induction at the axial surface of the wheel sector with no motion is now 1.0171 T. We 
have also plotted the results from Wouterse’s formulas as the red curve without data 
points. The simulations predict a critical frequency of 17,000 rpm; whereas, Wouterse’s 
formulas predict a critical frequency of 17,982 rpm. This value, 17982 rpm, is the same 
value predicted by the orange curve in Figure 37. Figure 38 also shows the previous two 
curves from Figure 37 for comparison. As expected, if the peak field is doubled, the peak 
absolute value of the torque is quadrupled. The peak absolute value of the simulated 
torque from Figure 37 is about 19.4 nt-m. The peak absolute value of the simulated 
torque from the blue curve in Figure 38 is about 77.6 nt-m. The peak absolute value from 
Wouterse’s formulas in Figure 37 is 18.13 nt-m, whereas the corresponding value from 
the red curve in Figure 38 is 75.04 nt-m. This is about 3.5 % greater than the product four 
times 18.13 nt-m.
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Figure 39 Comparison of Wouterse’s and simulated torque for two magnetic inductions.

We have performed a set of simulations with the material Al substituted for Ti6Al4V 
by using the value, 2.6316 10-8 ohm-m, for the wheel resistivity. We have done this to 
ascertain where the angular frequency for the minimal torque occurs for an Al wheel. The 
angular frequency was varied from 200 to 800 rpm. Figure 40 shows the eddy-current 
torque versus the angular frequency for the Al wheel as the black curve with data points. 
The angular frequency for the minimal torque occurred at 300 rpm. We will estimate this 
angular frequency by scaling our previous calculation for the Wouterse critical angular 
frequency by the Al resistivity. Then, we get ωkAl = 17,377.676 x 2.6316 10-8/1.78 10-6 = 
256.91625 rpm = 257 rpm. This estimate is fairly close to the value that the simulations 
give. The percent difference with 300 rpm as the base for comparison is -14.3 %. If we 
further scale for the radius at the coil bore center, rather than the radius at the edge of the 
disk , we get ωkAl = 256.91625(0.3/0.29) = 266 rpm. The percent difference is then 
improved to –11.3 %. We have also plotted the results for estimated torque from a 
computer program implementation of Wouterse’s formulas [7] as the orange curve.. At 
200 rpm, Wouterse’s formula gives –17.42 nt-m for the torque. The simulation gives 
about –22.2 nt-m. At 800 rpm, Wouterse’s formulas give –10.86 nt-m for the torque. The 
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simulation gives about –19.3 nt-m. With the simulated value as the base, the percent 
difference between the two curves is 21.5 % at 200 rpm and 43.4 % at 800 rpm. Beyond 
the minimal torque, Wouterse’s curve falls more rapidly than the simulated curve. 

Figure 40 Eddy-current torque versus angular frequency for the Al wheel.

We have also have simulated a notched Ti6Al4V wheel with a notched circular sector. 
The solid model is shown in Figure 41. The wheel sector shown in Figure 34 has been 
notched a number of times. The notches are 10 cm in radial extent by 1 cm wide. The 
linear distance between the notches at their base is about 1.667 cm; the linear distance 
between the notches at the outer radius of the wheel is about 3 cm. The notch centers are 
radially-spaced at 7.642 degrees. A mesh of 60,751 tetrahedra was used in a simulation at 
600 rpm. The resulting eddy-current power loss is shown in Figure 42. The peak power 
loss is about 24.5 w or 0.0328 hp. A simulation at 500 rpm yields a peak power loss of 
17.0 w or 0.0228 hp.
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Figure 41 The notched circular sector between the two coils.
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Figure 42 Eddy-current power loss for a notched experimental Ti6Al4V wheel at 600 rpm.

Comparison of Code Simulations with Reported Experiments and Analytic 
Formulas

We have completed a first set of simulations in an effort to reproduce the experimental 
drag force results for a thick rectangular coil moving over the rim of a thick rotating, 
conducting disk of an aluminum alloy in Section C.1. of  the paper by Boulnois and 
Giovachini [1]. In this experiment, a rectangular electrical coil of size 20 cm by 10 cm 
has its long dimension in the direction of motion. The coil carries a magnetomotive force 
of NI = 4000 A-turns. The rectangular coil cross section is 2 cm in the horizontal 
direction and 1 cm in the vertical direction. The details of the construction of the coil are 
not given in the paper. The coil is suspended at a height of about 5 mm above the rim of a 
rotating solid wheel. The wheel is 60 cm in diameter and 40 cm thick. The maximum rim 
speed of the wheel is about 16 m/sec. The wheel is made from an Al alloy with a 
permeability-conductivity product approaching 20 MKSA units. From this value, we 
calculate that the conductivity of the wheel alloy is about 1.592 siemens/m for a free 
space permeability of 12.56 10-7 henrys/m. The drag force on the coil “is measured with a 
conventional dynamometric gauge.” Boulnois and Giovachini performed two calculations 
of the drag force on the coil with their Green’s function formulation. One calculation 
assumed a 4-mm air gap between the coil lower extremity and the wheel rim surface. The 
other calculation assumed a 5-mm air gap. “The reason stems from the great difficulty 
encountered during the experiment in monitoring the flight height with reasonable 
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accuracy.” The agreement between the experimental and calculated results is reported to 
be within plus or minus 12 %. Rather than being straight above the wheel rim, the coil 
was given some curvature. The extent of this curvature is not revealed in the paper.  
Boulnois and Giovachini report that the coil curvature creates an additional component in 
the drag force, which is difficult to estimate. They believe that their agreement between 
calculated and measured results is reasonable. Boulnois and Giovachini’s experimental 
results extend from a velocity of just above 0 to about 14 m/sec. Up to about 3 m/sec, the 
calculated curve for a 5-mm gap falls very close to the experimental data points. Beyond 
about 3 m/sec, the calculated curve falls below the experimental data points. The 
calculated curve for the 4-mm gap is above the experimental data points for the entire 
velocity range. The experimental data points appear to be everywhere closer to the 5-mm 
theoretical curve. Above about 2.75 m/sec, the two theoretical curves bracket the 
experimental data points. 

Our solid model for simulation of the experiment is shown in Figure 43. A straight 
rectangular coil, colored red, is located 5 mm, at closest approach, above the cylindrical 
surface of a 40-cm thick wheel. The wheel, colored green, rotates counterclockwise in 
this view. In a reference frame fixed to the cylindrical centerline of the wheel, it appears 
that the coil moves toward the right side of the figure or clockwise. Thus, the drag force 
restraining the coil is expected to be predominately horizontally toward the left side of 
the figure. This is in the negative y direction. A lift force on the coil upward in the 
positive z direction also occurs when the wheel rotates.

The dimension of the coil in the y-direction is 22 cm. The dimension of the coil in the 
x-direction, along the wheel axis, is 12 cm. The cross section of the coil is 2 cm in the xy 
plane and 1 cm in the z-direction. We have used a computational mesh of 28,416 
tetrahedra. The wheel contains 21,397 tetrahedra, and the coil contains 94 tetrahedra. 
Simulations are performed at wheel rim speeds of 1, 2, 3, 5, 7.5, 10, 12.5, and 15 m/sec 
with the same mesh out to 0.10 sec. Figure 44 shows the time-dependent torque on the 
wheel for 12.5 m/sec. The torque falls from 0 to a minimum at about 0.01 sec, then 
increases to a steady value at about 0.028 sec. From about 0.07 sec, the torque increases 
to a maximum at about 0.084 sec, then decreases until about 0.98 sec. The initial pulse to 
about 0.028 sec is probably a start-up transient as the initial B field and the induced eddy 
currents for zero speed at the time 0 diffuse into the surrounding wheel region and 
dissipate. The increase and decline from about 0.07 to 0.98 sec is probably due to uneven 
meshing about the circumference of the wheel. The mesh is automatically the most 
refined near the coil and the least refined diametrically opposite the coil. Simulations 
with a finer wheel mesh should reveal if this is truly the reason for the variation of the 
torque on the wheel after about 0.028 sec. For each wheel rim velocity, the Lorentz drag 
force on the coil is calculated at 0.04, 0.06, 0.08, and 0.10 sec. The worst agreement with 
the experimental data should be from the values at 0.08 sec.
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Figure 43 A straight rectangular coil centered 5 mm above a cylindrical wheel.
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Figure 44 Time-dependent torque on the wheel at 12.5 m/sec.

Figure 45 shows the calculated drag force on the coil for each of the four times and  
estimates of values from the experimental data of Figure 3 of  Boulnois and Giovachini. 
Our experimental data points are generally not the experimental data points of Boulnois 
and Giovachini, but estimates from a roughed-in experimental curve based on their data 
points. The experimental error bars are set at plus and minus 12 % of the data point value. 
We see that the agreement is fairly good up to 5 m/sec. The agreement is worse from 7.5 
to 12.5 m/sec. The agreement then becomes better at 15 m/sec. Figure 46 shows the 
point-wise best match of the four calculated points and the average of the four points 
compared to the estimated experimental points. The agreement between the simulated 
drag values and estimates of the experimental values of Boulnois and Giovachini, 
athough imperfect at several velocities, indicate that the simulation code we are using can 
do a good job of approximating eddy current effects in wheels rotating in the magnetic 
fields generated by electrical coils.

Several changes in the simulations can be explored in the future in order to improve 
the agreement between the simulation and the experimental results of the drag force on 
the coil. The mesh in the wheel can be refined in an effort to reduce the variation of the 
torque on the wheel after the start-up transient. The mesh in the coil can be refined. The 
coil can be curved on the radius from the point of closest approach to the wheel rim 
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surface to the wheel axis of rotation. The simulations can be repeated at coil-to-wheel 
gaps of 4.25, 4.5, and 5 mm.

 Figure 45 Calculated and estimated experimental drag force results.
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Figure 46 Best match and average calculated drag force results.

We have also tried to reproduce the theoretical results presented by Smythe in his 
classic analysis of eddy-current disk brakes [3]. In his paper, Smythe uses a scalar 
magnetic potential method to derive a formula for the steady-state eddy-current torque of 
a thin, conducting disk rotating between the ferromagnetic pole faces of permanent 
magnets and electromagnets. Smythe assumes that the B field or magnetic flux density is 
purely axial in direction, uniform over the area of the projection of the circular pole face 
on the disk, and constant in time. He further assumes that the disk is so thin that skin 
effects do not occur across the thickness of the disk, which means that the B field 
distribution through the thickness of the disk is uniform. He then specializes his formula 
to calculate the eddy-current torque measured by Lentz in an experiment [4]. Smythe 
states that Lentz’s experimental eddy-current brake had the center of the disk cut out to 
simulate a ring whose width was roughly equal to the width of a thin conducting strip 
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considered by Rudenberg [5] and Zimmerman [5]. Lentz’s four poles were so far apart 
that they were magnetically independent. The inner radius of his ring was 5 cm, and the 
outer radius was 25 cm. The copper ring was 4 mm thick. The air gap between the poles 
was 1.2 cm. The centers of the rectangular pole pieces were 20.75 cm from the axis of 
rotation. The pole pieces were 6 cm in radial extent by 8 cm in tangential extent. The 
magnetic flux density was 2150 gauss when the ring was at rest. Lentz presented torque 
(in m-kg force) versus speed (in rpm) curves when the copper ring was hot (150-350 C 
degrees) and when it was cold. Smythe further states that he believes that the comparison 
of his formula with Lentz’s experimental data will be difficult because Lentz used 
rectangular poles, Lentz’s air gap was so large as to spread his magnetic flux over an 
unknown area, the center Lentz’s disk was removed, and the point of Lentz’s flux density 
measurement is unknown. Although Smythe feels that his formula is inaccurate at 
Lentz’s large dimensions and high rotation speeds, he considers a case comparable to 
Lentz’s experimental arrangement. 

Smythe chooses a disk thickness of 4 mm, a disk outer radius of 25 cm, a pole center 
position at 21 cm from the axis of rotation, a circular pole radius a of 4 cm, an air gap of 
6 mm, and a magnetic flux density of 2000 gauss. He considers an electromagnet with 
only one leg so that there is only one set of poles. He assumes that the reluctance is 
entirely in the air gap. He chooses a copper resistivity of 1/1700 emu units, which gives 
1.700 10-8 ohm-m. The corresponding conductivity is the reciprocal of 1.700 10-8 or about 
5.882 107 siemens/m. Smythe calculates that the peak torque will occur at 267 rpm. From 
his torque formula, he gets a peak torque of 1.15 108 dyne-cm = 11.5 nt-m = 1.17 kg 
force-m for his single set of poles. He estimates that Lentz’s peak torque should be about 
four times his value or 4.6 108 dyne-cm = 46.0 nt-m = 4.68 kg force-m. He plots a torque 
versus speed curve for 0 to 1600 rpm as his Figure 6.  From Smythe’s reproduction of 
Lentz’s torque versus speed results as Figure 5, Lentz’s peak torques appears to be about 
5.5 kg force-m. Smythe’s estimate for the peak torque is thus about 14.9 % lower than 
Lentz’s measurement. Smythe further states that a comparison of his Figures 5 and 6 
shows that his formula gives too rapid a decrease in torque at high speeds.

In order to simulate Smythe’s model, we have used his dimensions to create a solid 
model consisting of a copper disk and an electromagnet with a single set of poles. This 
model is shown in Figure 47. The disk is to the left of the figure. The electromagnet is 
shown on the right side of the figure. It consists of a core, shown in blue, and a coil, 
shown in green. The core is constructed from the union of five right circular cylinders 4 
cm in radius. The coil is an annulus with an outer diameter of 11.934 cm and an inner 
diameter of 8.354 cm. The length of the coil is 12 cm. The extent of the core 
perpendicular to the disk faces is 29.81 cm. The center of the disk is located at the origin 
of the coordinate system. The flat faces of the disk are parallel to the xy-plane and 2 mm 
to each side of it. The positive z-axis extends upward to the right from the center of the 
disk through the center of the pole gap and the center of the winding leg of the core.

The disk is set to rotate clockwise in the view shown in Figure 47. The disk is made of 
copper with a conductivity of 5.882 107 siemens/m. The core is made of iron with a
conductivity of 1.03 107 siemens/m and a relative permeability of 4000. The coil is made 
of copper with a conductivity of 5.80 107 siemsns/m. The current in the stranded coil is 
1009 A to give a B field magnitude of 0.200 T or 2000 gauss at the center of the pole 
projection on one of the disk surfaces when the disk is at rest. 
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In order to estimate the average B field magnitude in the pole projection volume of the 
disk once a revolution, a cylinder, whose base is the shape of the pole circle, is created in 
the disk at 22 degrees above the pole projection area when the disk is in its initial 
position. Once a revolution, this pole projection cylinder will coincide with the pole 
projection on the disk. At this time, it will be easy to use the code’s post processor 
calculator to estimate the average B field magnitude within the pole projection volume of 
the disk.

A simulation was run out to 0.238452 sec with the disk spinning at 267 rpm so that the 
disk would execute just more than one revolution and the pole projection cylinder would 
approximately line up with the projection of the pole circle on the disk. The solution 
space contained 37,321 tetrahedra. The disk contained 12,914 tetrahedra, the pole 
projection disk contained 376 tetrahedra, and the core contained 1816 tethedra. The time-
dependent torque on the disk is shown in Figure 48. The peak negative value of the 
torque on the disk is about -11.595 nt-m at about 0.01 sec. After the negative peak is 
reached, the torque increases to about -2.65 nt-m and stays close to this level for the rest 
of the simulation. The absolute value of the peak negative torque is very close to 
Smythe’s prediction of 11.5 nt-m, but this result most likely be due to the coincidental 
start up transient. The approximate steady-state absolute value of the torque is 23.0 % of 
Smythe’s prediction. Thus, we are a factor of 4.35 low, compared to Smythe’s estimate of 
the steady-state torque. We think the reason for this may be that, as the speed of rotation 
of the disk is increased, the eddy currents induced in the disk have a stronger and stronger 
effect in modifying the B field in the disk This effect, known in the electric motor 
literature as the “armature reaction,” is not included in Smythe’s formulation. It is, 
however, discussed in the illuminating paper by Wouterse [7].

At a very low rotational speed, the initial distribution of the magnetic flux density in 
the disk is unaffected by the eddy currents in the disk because they are relatively weak. 
At higher rotational speeds, the eddy currents become stronger and begin to alter the 
external field in the disk. The peak B field in the disk under the pole increases in 
amplitude and shifts in the direction of the motion. The B field under the pole in the 
region opposite the direction of motion decreases. As the speed increases, these effects 
become more pronounced. The average B field within the volume within the pole 
projection circle decreases so that Smythe’s assumption of a uniform, time-constant B 
field within the pole piece projection volume is no longer valid, and his formula becomes 
less and less correct.
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Figure 47 Model of an eddy-current brake disk and electromagnet.
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Figure 48 Time-dependent torque for the Smythe model with 37,321 tetrahedra. 

Figure 49 shows the distribution of the calculated B field on the surface of the disk at t 
= 0.  The field is nearly uniform across the pole projection area, which lies within the 
polygon of blue line segments bounding the pole face projection. The rectilinear blue 
lines are the wire frame view of the core. The B field level of 0.2122 T corresponds to the 
darkest red regions near the edge of the disk. The B field is almost everywhere 0.2011 T 
within the pole projection area. The motion of the disk is downward in this view. Figure 
50 shows the distribution of the calculated B field on the surface of the disk at t = 
0.00603 sec. The peak field has increased to 0.42144 T. It has also moved to the very 
edge of the pole projection area and somewhat beyond in the direction of motion. Figure 
51 shows the pattern of the B field on the surface of the disk at the end of the simulation 
at t = 0.238452 sec, when the pole projection cylinder coincides with the pole projection 
area after one revolution. The peak field within the pole projection circle on the disk has 
now dropped to 0.18829 T. The average B field over the volume of the pole projection 
cylinder is 0.05167 T. If we scale Smythe’s predicted peak torque with the square of the 
average field in the pole projection volume of the disk, a torque of 0.768 nt-m results, 
which is lower than the code calculated value of ~2.65 nt-m by a factor of 3.45. But, this 
scaled estimate ignores the contribution from the field and current density beyond the 
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pole projection volume. A larger cylinder for volume averaging must be used to get a 
better estimate of the torque from an average B field scaling of Smythe’s value.

 

Figure 49 The calculated B field on the surface of the disk at t = 0.

 



56

Figure 50 The calculated B field on the surface of the disk at t = 0.006 sec.
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Figure 51 The calculated B field on the surface of the disk at t = 0.238452 sec.

We have performed simulations with the model in Figure 47 at steady angular 
frequencies of 1 to 450 rpm. All the simulations were run out to 0.800 sec. The results are 
compared to Smythe’s formula in Figure 52. The black curve gives values of the eddy-
current torque from Smythe’s formula. The minimal torque, that is, the torque with the 
greatest absolute value, occurs at 267 rpm. Beyond 267 rpm, the absolute value of the 
torque decreases. The blue curve shows estimated steady-state torque values from the 
code simulations. The minimal torque for the simulations appears to lie between 100 and 
150 rpm. Beyond about 2 rpm, the code results differ strongly from the results from 
Smythe’s analytic formula. The orange curve shows the results of a computer program 
implementation of Wouterse’s estimation formulas [7] with the ratio ξ assumed equal to 
one. We see that, above about 50 rpm, the simulation curve lies closer to the curve from 
Wouterse’s formulas than to the curve from Smythe’s formula. Wouterse’s formulas 
predict a minimal torque at about 142 rpm; the simulation predicts a minimal torque 
between 100 and 150 rpm. Wouterse’s formulas predict a minimal torque of about –5.462 
nt-m; the simulations predict a minimal torque of about –2.62 nt-m. Although Wouterse’s 
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formulas appear to give better results than Smythe’s formula, they give an estimate based 
on an idealized, although more accurate, model. 

Wouterse starts his development with the frequently used formula for the power 
dissipation of a spatially uniform current density induced in a cylindrical volume of a 
conductive disk of speed v under a circular magnetic pole of diameter D with a uniform 
magnetic induction of B. The power dissipation is J2/ρ, the power dissipation per unit 
volume, times the cylindrical volume, πD2d/4, where J = B2v2 is the current density, v is 
the speed of the center of the pole projection on the disk, and d is the disk thickness. The 
power dissipation or power loss is 

 Pdis = πD2dB2v2/(4ρ).                                                         (16)
The eddy-current drag force felt by the disk is Pdis/v or

Fe = πD2dB2v/(4ρ).                                                            (17)
These two expressions ignore the effect of the eddy currents returning in the material 
beyond the pole projection cylinder in the disk. According to Wouterse, the analyses of 
Smythe [3] and Schieber [8], effectively introduce a correction c to the drag force 
expression so that it becomes

Fe = πD2dB2vc/(4ρ),                                                           (18)
c  = .5(1 – 1/(4(1 + R/A)2((A – R)/D)2)),                           (19)                            

where R is the distance from the disk center to the center of the pole projection, and A is 
the disk radius.

This corrected formula for the eddy-current drag force is believed to be good for low 
speeds only. To extend it to high speeds, Wouterse considers an idealization of the speed-
asymptotic case when v approaches an infinite value. In this case, because of the infinite 
speed, the magnetic flux from the pole face is completely excluded from the disk. The 
eddy currents are assumed to flow in a narrow rectangular distribution about the 
circumference of the circular pole face projection cylinder within the disk. The length of 
the eddy current path is taken to be the pole face circumference, πD. The eddy current 
amplitude is estimated from a closed path to goes from pole face to pole face and then 
encloses one section of the circular current. This H times dl line integral gives Bx/µ0, 
where x is the pole-to-pole gap, and mu0 is the permeability of free space, which equals 
the enclosed current, I. The radial extent of the enclosed current distribution is assumed 
to be ξx. Its axial extent is the disk thickness d. The resistance of the eddy-current path is 
given by the familiar formula, the resistivity times the path length, divided by the current 
distribution area. Thus, 

Resistance = ρπD/(ξxd),                                                    (20)
Current = B*x/µ0.                                                               (21)

For small values of x/D, Wourtese says the asymptotic eddy current power loss is 
given by the resistance times the current squared or

Pinf = ρπD/(ξxd)B2x2/µ0
2,                                                   (22)

Pinf = πρB2xD/(µ0
2ξd).              (23)

The asymptotic eddy-current drag force will be the power dissipation divided by the 
speed v or

Finf  = πρB2xD/(µ0
2ξdv).                                                     (24)

Wouterse then rewrites the expression for the asymptotic drag force as
Finf  =  [(1/µ0)(c/ξ).5(π4)D2B2(x/D).5][(2/µ0)(1/(cξ)).5(ρ/d)(x/D).5]2/v.  (25)                                                                                                       
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Wouterse then defines the grouping of terms within the first set of square brackets of 
the previous formula as F∧

e, the maximum value of the eddy-current drag force, and the 
grouping of terms within the second set of square brackets as vk, the critical speed or the 
speed at which the maximal drag force occurs, so that

F∧
e = (1/µ0)(c/ξ).5(π/4)D2B2(x/D).5,                                    (26)

vk =  (2/µ0)(1/(cξ)).5(ρ/d)(x/D).5,                        (27)
and

Finf  = F∧
e2vk/v.                                                                    (28)

Wouterse calls F∧
e the critical torque. 

To obtain an estimated eddy-current drag force, Fe(v), valid for all speeds v, Wouterse 
then replaces vk/v with the function, vvk/(v2 + vk

2) = 1/(vk/v + v/vk), which has the same 
behavior as v approaches infinity, so that

Fe(v)  = F∧
e2/(vk/v + v/vk),                                                  (29)

which is his Equation (8). The formulas for F∧
e and vk are his Equations 9 and 10.

Wouterse states that the only quantity not exactly known in has Equations 8-10, is ξ, 
but that it can be estimated as 1. He further suggests that ξ can be more exactly estimated 
by finite element calculation.  

Wouterse further cautions that many factors can cause his formulas to be inaccurate. 
For example, the iron yoke for the electromagnet flux return path can be close to the air 
gap so that the B field does not decay to zero just outside the pole face projection on the 
disk. Further, the x/D ratio may not be small. Also, in actual experiments, the change in 
the disk temperature due to eddy-current heating can cause the disk resistivity to rise non-
uniformly and thus affect the power dissipation. It must be noted that we have not yet 
included eddy-current heating of the target wheel in our calculations.

Wouterse’s formulas are not completely accurate, but represent an improvement over 
Smythe’s formula for high speeds, where the eddy-current fields strongly affect the 
externally applied field.

To obtain an expression for eddy-current torque from Fe(v), we multiply Fe(v) by R, 
so that

Torque = F∧
e2R/(vk/v + v/vk),                          (30)

Torque = F∧
e2Rvvk/(v2

k+ v2),                                           (31)
Torque = F∧

e2Rv2vk/(v(v2
k+ v2)),                                     (32)            

Torque = F∧
e2Rv2vk/(ωR(v2

k+ v2)),                                  (33)
Torque = F∧

e2v2vk/(ω(v2
k+ v2)),                                       (34)         

where ω is the angular frequency of rotation in radians/sec. The last expression for the 
eddy-current torque is used in the computer program.   

Acting on Wouterse’s suggestion, we have run the simulations at higher and higher 
angular frequencies in an effort to approach an asymptotic state. We have used angular 
frequencies of 2 104, 2 105, 2 107, 2 109, and 2 1012 rpm. The current distribution near the 
pole piece image on the disk looks generally similar as the angular frequency increases. 
At 2 1012 rpm, the current density on the upper surface of the disk at t = 0.045 sec is 
shown in Figure 53. We see that, as Wouterse predicts from experimental observation, a 
non-uniform layer of current density flows about the outer edge of the pole piece 
projection on the rotating disk. Wouterse implies through his Figure 8b that the layer is 
azimuthally symmetric, but that is obviously not the case for the simulation. Wouterse 
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may be referring to a configuration where the edge of the disk extends sufficiently far 
beyond the pole piece projection.  In our case the edge of the disk and the outer edge of 
the pole piece projection are tangent at one point. As a result, the simulation current 
density is highly concentrated at the edge of the disk. In addition, current density flows 
about the outer edge of the disk beyond the pole piece projection.  This outer current 
density is bipolar, that is both clockwise and counterclockwise, at different angles about 
the periphery of the disk. It encloses two other, weaker centers of circulation located at 
about 120 degrees in either direction from the pole piece projection. This current density 
pattern is shown in Figure 54. The symmetry of the centers of circulation of the current 
density vectors is striking.

We do not know for sure that the current density patterns in Figures 53 and 54 are the 
correct patterns for infinite angular frequency. The two secondary centers of current 
density circulation could be computational artifacts. But, for the present, we will assume 
that the current density patterns are correct. Figure 55 shows the distribution of the 
magnitude of the current density on the upper surface of the disk along the y-axis from  –
0.25 m to +0.25 m. The current density is strongly peaked at the left side of the figure, 
decreases to zero at the center of the pole piece projection, and then increases to form a 
bump on the right side of the pole piece projection, much like in Figure 8b of Wouterse’s 
paper. The current density decreases to zero at the right side of the disk, and then increase 
to a peak at right outer edge of the disk. The direction of the current density about the 
pole piece projection is clockwise until the far right side of the disk, where it becomes 
counterclockwise. We will estimate an equivalent uniform asymptotic pole piece 
projection current density layer width by the method indicated by Wouterse. We will 
assume, perhaps incorrectly, that all the current density flows around the pole piece 
projection, and that its average power loss, Pdis =  I2

equivReqiuv, equals the average power 
loss in the disk. From the time dependent power loss curve calculated by the code, the 
average power loss in the disk is estimated as 111 w. If we integrate the current density 
distribution shown in Figure 55 from the left edge of the disk over 4 cm to the center of 
the pole piece projection and multiply by the disk thickness, d, of 4 mm, we get an 
estimated circulating current of about 826 A for Iequiv. We assume that the central radius 
of the circulating current layer to be a + ∆y/2, where a is the pole piece radius of 4 cm, 
and ∆y is the equivalent circulating current density width. The equivalent resistance is 

Requiv = ρ(length/area) = ρ2π(a + ∆y/2)/(d∆y).                (35)
The equation for ∆y is then

I2
equiv Requiv = I2

equiv ρ2π(a + ∆y/2)/(d∆y) = Pdis,     (36)
so that the formula for ∆y is

 ∆y = I2
equiv2πa/(dPdis/ρ – I2

equiv π).                                   (37)
Inserting the proper numbers into the Equation 37 gives ∆y = 0.00715 m. Division of ∆y 
by the pole piece gap distance of 0.006 m gives 1.192 as an estimate for ξ for our 
geometry. When we use this value of ξ in Wouterse’s formulas, we get the red curve for 
the torque shown in Figure 52. When compared with the curve from the simulations, this 
estimate with ξ = 1.19 is an improvement over the curve for ξ = 1. Thus, use of finite 
element code calculations to estimate Wouterse’s factor ξ does improve the agreement of 
Wouterse’s formulas with the simulated torque curve. One possible reason the agreement 
is not better may be that our asymptotic current density distribution differs from 
assumption that the asymptotic current density flows only about the pole piece projection 
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in an azimuthally uniform layer. The existence of three centers of current density 
circulation in the simulation, instead of one, may also affect the agreement. This 
assumption may be true for a disk whose outer edge extends far beyond the pole piece 
projection. If we take ξ as 1.8, we get the yellow green curve shown in Figure 52. This 
choice of ξ gives a better match to most of the simulated torque curve, but it is merely a 
guess, extrapolated from the results of ξ = 1.19.

 

 
Figure 52 Simulated and calculated torque versus speed curves for Smythe’s formula.
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Figure 53 Upper surface Current density vectors around the pole projection at 2e12 rpm.
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Figure 54 Upper surface current density vectors about the whole disk at 2e12 rpm.
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Figure 55 The magnitude of the Upper surface current density along the y-axis.

The difference between the torque for the simulation  and that from Smythe’s formula 
is shown in a different way in Figure 56, which shows the ratio of the torque from the 
code simulations to the torque from Smythe’s formula versus angular frequency.
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Figure 56 Ratio of code torque to Smythe’s formula torque versus angular frequency.

Possible Future Work

In the future, another experiment we hope to simulate is the configuration of four 
permanent magnets rotating over an aluminum disk, reported by Lorimer, Lieu, Hull, 
Mulcahy, and Rossing [2].    
 

Access to References

Reference 1 may be conveniently accessed in the digital archives of the Journal of 
Applied Physics. References 2, 7, and 8 can be easily accessed from the digital archives 
of the IEEE Xplore facility. Reference 3 may available only in the bound copies of the 
Transactions of the American Institute of Electrical Engineers in university and other 
technical libraries. References 4-6, which are in German, may be available only in 
university libraries. Reference 9 is the second volume of a well-known three-volume set 
of textbooks on electromechanics by two MIT professors. It may still be in print and is in 
many technical libraries.
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